000	00	0000	0000000000	0

Linear Regression

Stephen B. Holt, Ph.D.

ROCKEFELLER COLLEGE OF PUBLIC AFFAIRS & POLICY UNIVERSITY AT ALBANY State University of New York

April 14, 2022

1/22

Review				
000	00	0000	0000000000	0
Return	ing to the Road N	Лар		

Most policy research involves deceptively simple steps:

- Objine the question you would like answered.
- State hypotheses about the answer to the question.
- Ollect data that can answer the question (convenience samples, random samples, stratified or multistage samples).
- Calculate measures to test hypotheses put forward about the relationship of interest (measures of central tendency, measures of spread, test statistics).
- Organize and report results (graphs, tables, interpretations of measures).

Review				
000	00	0000	0000000000	0

Focusing on Steps 2 and 4: Hypothesis Testing

- $\textbf{ State the null and alternative hypotheses and } \alpha \text{ level of significance}$
 - Null is a *status quo* assumption about the world you are testing with your sample of data. Stated as $H_o: \mu = X$ where X is an assumption about the true value of μ
 - Alternative is *your* assumption about the world you are testing with your sample of data. Generally, the alternative hypothesis takes the form of $H_1 : \mu \neq X$, $H_1 : \mu > X$, or $H_1 : \mu < X$.
 - α is a probability, from 0 to 1, that represents the maximum threshold of a p-value you will accept for rejecting the null. Conventionally, social scientists use $\alpha = 0.05$.
- ② Calculate t-statistic to test the null hypothesis

•
$$t = \frac{(\overline{X} - \mu)}{\frac{s}{\sqrt{n}}}$$
 using the mean, standard deviation, and n from your sample and plugging in your null hypothesis for μ

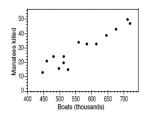
- Use the absolute value of t to find the p-value.
- **③** Compare the p-value to α ; if $p < \alpha$, reject the null hypothesis.

イロト イロト イヨト トヨト

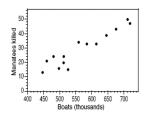
Review				
000	00	0000	0000000000	0
Remin	ders			

- Hypothesis testing is always about whether a *statistic* (e.g, $\overline{X}, \overline{X}_1 \overline{X}_2$) accurately reflects a *parameter of interest* (e.g., $\mu, \mu_1 \mu_2$).
- A *parameter* can be the value of a single variable in a typical observation in a population OR the typical relationship between two variables in a typical observation in a population.
- The logic of hypothesis testing for a relationship between two variables is very similar to the logic of testing a statistic from a sample how confident are we that our estimate of the relationship is not due to random chance?

• Linear regression continues our effort at the same goal we've had in previous weeks: using a sample to estimate a population parameter (thus far, μ) and test hypotheses about the population parameter.



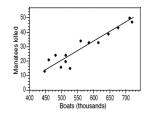
• Linear regression continues our effort at the same goal we've had in previous weeks: using a sample to estimate a population parameter (thus far, μ) and test hypotheses about the population parameter.



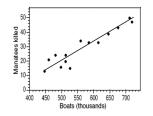
• Now we move to a parameter that captures a relationship between two variables in a population, similar to two-sample hypothesis testing. We've seen scatterplots of x and y before. They also come from random samples and change across samples.

	Linear Regression Setup			
000	00	0000	0000000000	0
Basics				
Linear	Regression Setup			

• In our brave new world, we are still interested in an underlying population parameter, in this case the average outcome Y or μ_{y} .

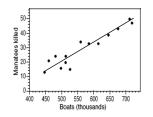


 In our brave new world, we are still interested in an underlying population parameter, in this case the average outcome Y or μ_v.



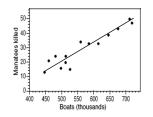
• Linear regressions, as the name implies, expresses the relationship of x and y as a linear relationship. The goal is to use the line that fits the relationship observed in the data to learn about the population mean response μ_{y} as a function of our explanatory variable X.

 In our brave new world, we are still interested in an underlying population parameter, in this case the average outcome Y or μ_y.



- Linear regressions, as the name implies, expresses the relationship of x and y as a linear relationship. The goal is to use the line that fits the relationship observed in the data to learn about the population mean response μ_y as a function of our explanatory variable X.
- Mathematically expressed: $\mu_y = \beta_0 + \beta_1 x$

 In our brave new world, we are still interested in an underlying population parameter, in this case the average outcome Y or μ_y.



- Linear regressions, as the name implies, expresses the relationship of x and y as a linear relationship. The goal is to use the line that fits the relationship observed in the data to learn about the population mean response μ_y as a function of our explanatory variable X.
- Mathematically expressed: $\mu_y = \beta_0 + \beta_1 x$
- We also want to know if β_x , the relationship observed, is statistically significant (i.e., not attributable to chance or sampling error).

• In the population, there is a linear regression relationship: $\mu_y = \beta_0 + \beta_1 x.$

		Statistics		
000	00	0000	0000000000	0
<u> </u>		D		
Statisti	ical Model for Lin	iear Regress	sion	
Statist			51011	

- In the population, there is a linear regression relationship: $\mu_y = \beta_0 + \beta_1 x.$
- So, because μ_y is some outcome we think is important, like stopping boats from killing manatees, and x can tell us something about what changes μ_y in the population, we collect a sample of data.

- In the population, there is a linear regression relationship: $\mu_y = \beta_0 + \beta_1 x.$
- So, because μ_y is some outcome we think is important, like stopping boats from killing manatees, and x can tell us something about what changes μ_y in the population, we collect a sample of data.

7 / 22

• The sample can then be used to fit the simple model: Data = fit + residual $y_i = (\beta_0 + \beta_1 x) + \varepsilon_i$,

where ε_i are independent and normally distributed $N(0, \sigma)$.

- In the population, there is a linear regression relationship: $\mu_y = \beta_0 + \beta_1 x.$
- So, because μ_y is some outcome we think is important, like stopping boats from killing manatees, and x can tell us something about what changes μ_y in the population, we collect a sample of data.
- The sample can then be used to fit the simple model: Data = fit + residual $y_i = (\beta_0 + \beta_1 x) + \varepsilon_i$, where α are independent and prove the distributed N(0, z)

where ε_i are independent and normally distributed $N(0, \sigma)$.

• Linear regression assume equal variance of y (i.e., σ is the same for all values of x).

		Statistics		
000	00	0000	0000000000	0

Statistical Model for Linear Regression

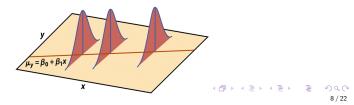
- In the population, there is a linear regression relationship: $\mu_y = \beta_0 + \beta_1 x.$
- So, because μ_y is some outcome with think is important, like stopping boats from killing manatees and x can tell us something about what changes μ_y in the population, we collect a sample of data.
- The sample can then be used to fit the simple model:

Data = fit + residual

 $y_i = (\beta_0 + \beta_1 x) + \varepsilon_i,$

where ε_i are independent and normally distributed $N(0, \sigma)$.

• Linear regression assume equal variance of y (i.e., σ is the same for all values of x).



• The value of \hat{y} from the least-squares regression line is really a prediction of the mean value of y (μ_y) for a given value of x.

- The value of \hat{y} from the least-squares regression line is really a prediction of the mean value of y (μ_y) for a given value of x.
- The least-squares regression line (ŷ = b₀ + b₁x) is the best estimate of the true population regression line (μ_y = β₀ + β₁x)

- The value of \hat{y} from the least-squares regression line is really a prediction of the mean value of y (μ_y) for a given value of x.
- The least-squares regression line $(\hat{y} = b_0 + b_1 x)$ is the best estimate of the true population regression line $(\mu_v = \beta_0 + \beta_1 x)$
 - \widehat{y} unbiased estimate for mean population response μ_y

- The value of \hat{y} from the least-squares regression line is really a prediction of the mean value of y (μ_y) for a given value of x.
- The least-squares regression line $(\hat{y} = b_0 + b_1 x)$ is the best estimate of the true population regression line $(\mu_v = \beta_0 + \beta_1 x)$
 - \widehat{y} unbiased estimate for mean population response μ_y
 - b_0 unbiased estimate for intercept β_0

- The value of \hat{y} from the least-squares regression line is really a prediction of the mean value of y (μ_y) for a given value of x.
- The least-squares regression line (ŷ = b₀ + b₁x) is the best estimate of the true population regression line (μ_y = β₀ + β₁x)
 - \widehat{y} unbiased estimate for mean population response μ_y
 - b_0 unbiased estimate for intercept β_0
 - b₁ unbiased estimate for slope β₁

Review	Linear Regression Setup	Statistics	Statistical Inference	Attendance
000	OO	000	00000000000	O
Estima	ting parameters			

Calculating the best fit line ourselves would involve first calculating the slope:

$$\beta_1 = \frac{\sum (x_i - \overline{X})(y_i - \overline{Y})}{\sum (x_i - \overline{X})^2}$$
(1)

...and then using the basic form of a line to calculate the intercept:

$$\beta_0 = \overline{Y} - \beta_1 \overline{X} \tag{2}$$

▲ロト ▲御 ト ▲臣 ト ▲臣 ト ● 日 ●

10 / 22

Dogr	ession Standard E			
000	00	0000	000000000	0
			Statistical Inference	

• Recall that statistical inference for the mean of a sample relies upon an estimate of σ to calculate the standard error (s.e. = $\frac{s}{\sqrt{n}}$, where s is the sample standard deviation). The logic and process is similar for regression estimates.

D				
000	00	0000	000000000	0
			Statistical Inference	

- Recall that statistical inference for the mean of a sample relies upon an estimate of σ to calculate the standard error (s.e. = $\frac{s}{\sqrt{n}}$, where s is the sample standard deviation). The logic and process is similar for regression estimates.
- As before, the population standard deviation of y, σ_y, represents the spread of y, only in the population regression model, it reflects the spread of y for each value of x in the population (i.e., the spread of the normal distribution of ε_i around the mean μ_y).

	Statistical Inference	
	0000000000	

- Recall that statistical inference for the mean of a sample relies upon an estimate of σ to calculate the standard error (s.e. = $\frac{s}{\sqrt{n}}$, where s is the sample standard deviation). The logic and process is similar for regression estimates.
- As before, the population standard deviation of y, σ_y, represents the spread of y, only in the population regression model, it reflects the spread of y for each value of x in the population (i.e., the spread of the normal distribution of ε_i around the mean μ_y).
- Of course, we don't observe this, but we can use our sample data to compute an estimate of the regression standard error, s, for a sample sized n using the residuals (y_i ŷ_i):

$$s_{reg} = \sqrt{\frac{\sum residual^2}{n-2}} = \sqrt{\frac{\sum (y_i - \widehat{y}_i)^2}{n-2}}$$
(3)

			Statistical Inference	
000	00	0000	0000000000	0

- Recall that statistical inference for the mean of a sample relies upon an estimate of σ to calculate the standard error (s.e. = $\frac{s}{\sqrt{n}}$, where s is the sample standard deviation). The logic and process is similar for regression estimates.
- As before, the population standard deviation of y, σ_y, represents the spread of y, only in the population regression model, it reflects the spread of y for each value of x in the population (i.e., the spread of the normal distribution of ε_i around the mean μ_y).
- Of course, we don't observe this, but we can use our sample data to compute an estimate of the regression standard error, s, for a sample sized n using the residuals (y_i ŷ_i):

$$s_{reg} = \sqrt{\frac{\sum residual^2}{n-2}} = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$$
(3)

• *s* provides an unbiased estimate of the regression standard deviation σ , which we can use for inference about the mean population response μ_y .

Demoster	a subtract of		
		000000000	
		Statistical Inference	

Regression Standard Errors, continued

The formula is similar for the standard error of the slope (β_1) , only the regression standard error (s_{reg}) is divided by the square root of the squared residuals of X:

$$SE_{b1} = \frac{s_{reg}}{\sqrt{\sum (x_i - \overline{x})^2}}$$
(4)

Review	Linear Regression Setup	Statistics	Statistical Inference	Attendance
000	00	0000	00●00000000	O
Confid	ence Intervals for	Regression	Parameters	

• Estimating the regression parameters β_0, β_1 is a case of one-sample inference with unknown population variance.

C C	 <u>ь</u> .		
		000000000	
		Statistical Inference	

- Estimating the regression parameters β_0, β_1 is a case of one-sample inference with unknown population variance.
 - We rely on the t distribution with n-2 degrees of freedom.

Review		Linear Regressie		tatistics)000	Statistical Inference	Attendance O
~	C' 1	• •				

- Estimating the regression parameters β_0, β_1 is a case of one-sample inference with unknown population variance.
 - We rely on the t distribution with n-2 degrees of freedom.
- A level C confidence interval for the slope (β₁) is proportional to the standard error of the least-squares slope:

$$b_1 \pm t * SE_{b1} \tag{5}$$

- Estimating the regression parameters β_0, β_1 is a case of one-sample inference with unknown population variance.
 - We rely on the t distribution with n-2 degrees of freedom.
- A level C confidence interval for the slope (β₁) is proportional to the standard error of the least-squares slope:

$$b_1 \pm t * SE_{b1} \tag{5}$$

 A level C confidence interval for the intercept (β₀) is proportional to the standard error of the least-squares intercept:

$$b_0 \pm t * SE_{b0} \tag{6}$$

(日) (部) (注) (注) (三)

13/22

- Estimating the regression parameters β_0, β_1 is a case of one-sample inference with unknown population variance.
 - We rely on the t distribution with n-2 degrees of freedom.
- A level C confidence interval for the slope (β₁) is proportional to the standard error of the least-squares slope:

$$b_1 \pm t * SE_{b1} \tag{5}$$

 A level C confidence interval for the intercept (β₀) is proportional to the standard error of the least-squares intercept:

$$b_0 \pm t * SE_{b0} \tag{6}$$

• Note that t^* is the t-critical value for the t(n-2) distribution with area C between $-t^*$ and $+t^*$.

Review	Linear Regression Setup	Statistics	Statistical Inference	Attendance	
000	00	0000	000●0000000	O	
Significance test for the slope					

• Once we have calculated the standard error of the least-squares regression line, the process for testing whether the relationship between x and y is statistically significant is analogous to the process for hypothesis testing for a single sample estimate. Here, b_1 , or the slope of the least-squares line, is the estimate we use to test a hypothesis about β_1 .

Review	Linear Regression Setup	Statistics	Statistical Inference	Attendance		
000	00	0000	000●0000000	O		
Significance test for the slope						

- Once we have calculated the standard error of the least-squares regression line, the process for testing whether the relationship between x and y is statistically significant is analogous to the process for hypothesis testing for a single sample estimate. Here, b_1 , or the slope of the least-squares line, is the estimate we use to test a hypothesis about β_1 .
- As usual, we start with the null hypothesis. Here, since we want to know if our observed relationship between x and y in our sample is significant, we use the null hypothesis that there is no relationship. Formally, $H_0: \beta_1 = 0$. We can test using a 1- or 2-sided alternative hypothesis.

C'	 1		
		000000000	
		Statistical Inference	

Significance test for the slope

- Once we have calculated the standard error of the least-squares regression line, the process for testing whether the relationship between x and y is statistically significant is analogous to the process for hypothesis testing for a single sample estimate. Here, b_1 , or the slope of the least-squares line, is the estimate we use to test a hypothesis about β_1 .
- As usual, we start with the null hypothesis. Here, since we want to know if our observed relationship between x and y in our sample is significant, we use the null hypothesis that there is no relationship. Formally, $H_0: \beta_1 = 0$. We can test using a 1- or 2-sided alternative hypothesis.
- We will again use the t distribution and calculate our t-score using our estimate of the parameter and estimate of the parameter's spread. In this case, $t = \frac{b_1}{SE_{b1}}$.

Review	Linear Regression Setup	Statistics	Statistical Inference	Attendance
000	OO	0000		O
C: :C				

Significance test for the slope

- Once we have calculated the standard error of the least-squares regression line, the process for testing whether the relationship between x and y is statistically significant is analogous to the process for hypothesis testing for a single sample estimate. Here, b_1 , or the slope of the least-squares line, is the estimate we use to test a hypothesis about β_1 .
- As usual, we start with the null hypothesis. Here, since we want to know if our observed relationship between x and y in our sample is significant, we use the null hypothesis that there is no relationship. Formally, $H_0: \beta_1 = 0$. We can test using a 1- or 2-sided alternative hypothesis.
- We will again use the t distribution and calculate our t-score using our estimate of the parameter and estimate of the parameter's spread. In this case, $t = \frac{b_1}{SE_{b1}}$.
- We then use the t distribution of t(n-2) degrees of freedom to find the p-value.

Review 000	Linear Regression Setup OO	Statistics 0000	Statistical Inference	Attendance O
C: .C				

Significance test for the slope

- Once we have calculated the standard error of the least-squares regression line, the process for testing whether the relationship between x and y is statistically significant is analogous to the process for hypothesis testing for a single sample estimate. Here, b_1 , or the slope of the least-squares line, is the estimate we use to test a hypothesis about β_1 .
- As usual, we start with the null hypothesis. Here, since we want to know if our observed relationship between x and y in our sample is significant, we use the null hypothesis that there is no relationship. Formally, $H_0: \beta_1 = 0$. We can test using a 1- or 2-sided alternative hypothesis.
- We will again use the t distribution and calculate our t-score using our estimate of the parameter and estimate of the parameter's spread. In this case, $t = \frac{b_1}{SE_{b1}}$.
- We then use the t distribution of t(n-2) degrees of freedom to find the p-value.
- Finally, as before, we compare the p-value to our α threshold and infer whether β_1 is significantly different from 0 given our sample.

Review	Linear Regression Setup	Statistics	Statistical Inference	Attendance
000	00	0000	0000000000	O
Signifi	cance test for the	slope		

Visually:

$$H_{a}: \beta_{1} > 0 \text{ is } P(T \ge t)$$

$$H_{a}: \beta_{1} < 0 \text{ is } P(T \le t)$$

$$H_{a}: \beta_{1} \neq 0 \text{ is } 2P(T \ge |t|)$$

$$I_{1}$$

イロト イヨト イヨト イヨト ヨー のへで 15/22

Review	Linear Regression Setup	Statistics	Statistical Inference	Attendance
000	00	0000	00000●00000	O
Inferen	ce for Prediction			

• One use for regression is for predicting the value of y, \hat{y} , for any value of x within the range of data tested: $\hat{y} = b_0 + b_1 x$

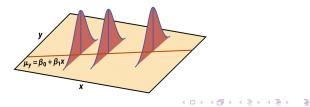
- One use for regression is for predicting the value of y, \hat{y} , for any value of x within the range of data tested: $\hat{y} = b_0 + b_1 x$
- But, just like our estimates \overline{y} from a sample, the regression equation depends on the particular sample drawn. More reliable predictions require inference.

- One use for regression is for predicting the value of y, \hat{y} , for any value of x within the range of data tested: $\hat{y} = b_0 + b_1 x$
- But, just like our estimates \overline{y} from a sample, the regression equation depends on the particular sample drawn. More reliable predictions require inference.
- To estimate an individual response y for a given value x, we use a prediction interval.

- One use for regression is for predicting the value of y, \hat{y} , for any value of x within the range of data tested: $\hat{y} = b_0 + b_1 x$
- But, just like our estimates \overline{y} from a sample, the regression equation depends on the particular sample drawn. More reliable predictions require inference.
- To estimate an individual response y for a given value x, we use a prediction interval.
- If we randomly sampled many times, there would be many different values of y obtained for a particular x following a N(0, σ) distribution around the mean response μ_y.

Review 000	Linear Regression Setup OO	Statistics 0000	Statistical Inference	Attendance O
Inferer	ce for Prediction			

- One use for regression is for predicting the value of y, \hat{y} , for any value of x within the range of data tested: $\hat{y} = b_0 + b_1 x$
- But, just like our estimates \overline{y} from a sample, the regression equation depends on the particular sample drawn. More reliable predictions require inference.
- To estimate an individual response y for a given value x, we use a prediction interval.
- If we randomly sampled many times, there would be many different values of y obtained for a particular x following a $N(0, \sigma)$ distribution around the mean response μ_y .



			Statistical Inference 000000000000	
Confide	ence Intervals and	Prediction		

• We can calculate a confidence interval at level C for each predicted value of y, \hat{y} , at each level or value of x.

Review	Linear Regression Setup	Statistics	Statistical Inference	Attendance
000	OO	0000	0000000€000	O
Confide	ence Intervals and	Prediction		

- We can calculate a confidence interval at level C for each predicted value of y, \hat{y} , at each level or value of x.
- The level C prediction interval for a single observation of y when x takes on the value x* is: $\hat{y} \pm t *_{n-2} SE_{\hat{y}}$

Review	Linear Regression Setup	Statistics	Statistical Inference	Attendance
000	OO	0000	0000000000000	O
Confid	ence Intervals and	Prediction		

- We can calculate a confidence interval at level C for each predicted value of y, \hat{y} , at each level or value of x.
- The level C prediction interval for a single observation of y when x takes on the value x* is:

 ŷ ± t *_{n-2} SE_ŷ
- $y \pm \iota *_{n-2} SE_{\widehat{y}}$
- The prediction interval represents mainly the error from the normal distribution of the residuals (ε_i).

			Statistical Inference	
000	00	0000	0000000000	0

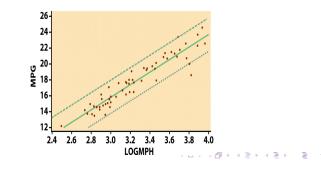
Confidence Intervals and Prediction

- We can calculate a confidence interval at level C for each predicted value of y, \hat{y} , at each level or value of x.
- The level C prediction interval for a single observation of y when x takes on the value x* is:

 $\widehat{y} \pm t *_{n-2} SE_{\widehat{y}}$

• The prediction interval represents mainly the error from the normal distribution of the residuals (ε_i) .

Graphically:

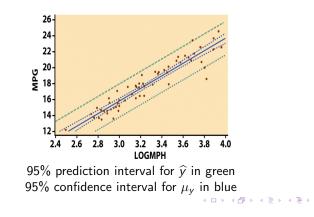


19/22

Confidence Intervals for Mean Response (μ_{ν})

- The confidence interval for μ_y contains, with level C% confidence, the population mean μ_y at a particular level of x.
- The prediction interval contained C% of all the individual values taken by y at a particular value of x.

Graphically:



• The coefficient of determination, generally referred to as R^2 or the square of the correlation coefficient, measures the percentage of the variance in y (vertical scatter from the regression line) that can be explained by changes in x.

• The coefficient of determination, generally referred to as R^2 or the square of the correlation coefficient, measures the percentage of the variance in y (vertical scatter from the regression line) that can be explained by changes in x.

• $R^2 = \frac{\text{variation in y caused by x (the regression line)}}{\text{total variation in observed y values around the mean}}$

- The coefficient of determination, generally referred to as R^2 or the square of the correlation coefficient, measures the percentage of the variance in y (vertical scatter from the regression line) that can be explained by changes in x.
- R² = variation in y caused by x (the regression line) total variation in observed y values around the mean
 More formally:

$$R^{2} = \frac{\sum (\widehat{y}_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y}_{i})^{2}} = \frac{SSM}{SST}$$
(7)

(日) (部) (注) (注) (三)

21 / 22

Review	Linear Regression Setup	Statistics	Statistical Inference	Attendance
000	00	0000	00000000000	•
Attend	ance			

∞) Q (♥ 22 / 22

注入 시 문 시 ... 臣