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Basics

Multiple Regression Setup

Up to now, we have considered, in detail, the linear regression model
of outcome Y using one explanatory variable, X :

Ŷ = β0 + β1X1 (1)

We know, of course, that for predicting most outcomes or studying
most effects of a particular X , the population model will likely need
to account for more factors than a single X , particularly in the
absence of random assignment.

In multiple regression, the outcome Y depends on many explanatory
variables in the population, denoted as X1,X2,X3, ...Xk :

Ŷ = β0 + β1X1 + β2X2 + ...+ βkXk (2)
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Data structure for Multiple Regression

The data for a simple linear regression problem consists of n
observations with data points at (xi , yi ) of the two variables in the
model.

Data for multiple linear regression consists of the value of outcome
variable Y and k explanatory (or independent) variables
(X1,X2,X3, ...Xk) for n observations.

The data should be structured in the software as:

Independent Variables Dependent Variables
Case X1 X2 X3 X4 Y

1 x11 x12 x13 x14 y1
2 x21 x22 x23 x24 y2
3 x31 x32 x33 x34 y3
n xn1 xn2 xn3 xn4 yn
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Multiple Linear Regression Model

For k number of explanatory variables, we can express the
population mean response (the outcome or µy ) as a linear equation:

µy = β0 + β1X1 + ...+ βkXk (3)

The statistical model for n sample data (i = 1, 2, ...n) is then:

Data = fit + residual
yi = (β0 + β1X1i + ...+ βkXki ) + (εi )

where the εi are independent and normally distributed N(0, σ).

Multiple linear regression assumes equal variance σ2 of y.

β0,1,...k are parameters of the population model we try to estimate
with our sample of n observations.
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Estimation of the parameters

From a simple random sample of n individuals for which we collect
data on k + 1 variables (x1, ...xk , y), the least-squares regression
method estimates the line that minimizes the sum of squared
deviations (ei (= yi − ŷi )) to express y as the linear function of k
explanatory variables:

ŷi = b0 + b1x1i + ...+ bkxki (4)

As is the case with simple linear regression, the constant b0 is the
intercept of the least-squares line of y .

The coefficients (b1 through bk) reflect the unique association of
each independent variable in the model with outcome y , analogous
to the slope of the simple linear model. They provide unbiased
estimates of the population parameters.
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Confidence Intervals for Regression Parameters

Estimating the regression parameters β0, ..., βk is a case of
one-sample inference with unknown population variance.

We rely on the t distribution with n − k − 1 degrees of freedom.

A level C confidence interval for the slope (βj) is proportional to the
standard error of the least-squares estimate of βj :

bj ± t ∗ SEbj (5)

We rely on statistics software to estimate SEbj

Note that t* is the t-critical value for the t(n − k − 1) distribution
with area C between -t* and +t*.

As before, our t-score for bj is again calculated as a ratio of the
coefficient to the standard error:

t =
bj

SEbj
(6)

with a t distribution of n − k − 1 degrees of freedom.
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Coefficient of Determination (R2)

The coefficient of determination, generally referred to as R2 or the
square of the correlation coefficient, measures the percentage of the
variance in y (vertical scatter from the regression line) that can be
explained by changes in x. In multiple regression, the calculation and
interpretation is the same except the predicted y (ŷ) of the model
includes all explanatory variables taken together.

More formally:

R2 =

∑
(ŷi − y)2∑
(yi − y i )

2
=

SSM

SST
(7)
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