1/8

Linear Regression

Stephen B. Holt, Ph.D.

ROCKEFELLER COLLEGE OF PUBLIC AFFAIRS & POLICY UNIVERSITY AT ALBANY State University of New York

April 19, 2022

イロト イヨト イヨト イヨト

• Up to now, we have considered, in detail, the linear regression model of outcome Y using one explanatory variable, X:

$$\widehat{Y} = \beta_0 + \beta_1 X_1 \tag{1}$$

• Up to now, we have considered, in detail, the linear regression model of outcome Y using one explanatory variable, X:

$$\widehat{Y} = \beta_0 + \beta_1 X_1 \tag{1}$$

• We know, of course, that for predicting most outcomes or studying most effects of a particular X, the population model will likely need to account for more factors than a single X, particularly in the absence of random assignment.

• Up to now, we have considered, in detail, the linear regression model of outcome Y using one explanatory variable, X:

$$\widehat{Y} = \beta_0 + \beta_1 X_1 \tag{1}$$

- We know, of course, that for predicting most outcomes or studying most effects of a particular X, the population model will likely need to account for more factors than a single X, particularly in the absence of random assignment.
- In multiple regression, the outcome Y depends on many explanatory variables in the population, denoted as $X_1, X_2, X_3, ..., X_k$:

$$\widehat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k \tag{2}$$

Multiple Regression Setup		
Basics		
Data structure for	Multiple Regression	

• The data for a simple linear regression problem consists of n observations with data points at (x_i, y_i) of the two variables in the model.

Multiple Regression Setup		
Basics		
Data structure for Multiple	Regression	

- The data for a simple linear regression problem consists of n observations with data points at (*x_i*, *y_i*) of the two variables in the model
- Data for multiple linear regression consists of the value of outcome variable Y and k explanatory (or independent) variables (X₁, X₂, X₃, ...X_k) for n observations.

Aultiple Regression Setup		
000	000	0
Basics		

Data structure for Multiple Regression

- The data for a simple linear regression problem consists of n observations with data points at (x_i, y_i) of the two variables in the model.
- Data for multiple linear regression consists of the value of outcome variable Y and k explanatory (or independent) variables (X₁, X₂, X₃, ...X_k) for n observations.

۲	The data	should	be	structured	in	the	software	as:
---	----------	--------	----	------------	----	-----	----------	-----

	Independent Variables			Dependent Variables	
Case	X_1	X_2	<i>X</i> ₃	X_4	Y
1	$x1_1$	x1 ₂	x1 ₃	x14	y1
2	$x2_1$	$x2_2$	x2 ₃	x24	y2
3	x31	x3 ₂	x3 ₃	x34	у3
n	xn_1	xn ₂	xn ₃	xn ₄	yn

 For k number of explanatory variables, we can express the population mean response (the outcome or μ_y) as a linear equation:

$$\mu_{\mathbf{y}} = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k \tag{3}$$

Multiple Linear Regression Model

 For k number of explanatory variables, we can express the population mean response (the outcome or μ_y) as a linear equation:

$$\mu_{y} = \beta_{0} + \beta_{1} X_{1} + \dots + \beta_{k} X_{k}$$
(3)

• The statistical model for n sample data (i = 1, 2, ...n) is then:

$$egin{aligned} Data &= & \textit{fit} &+ \textit{residual} \ y_i &= & (eta_0 + eta_1 X_{1i} + ... + eta_k X_{ki}) + (arepsilon_i) \end{aligned}$$

where the ε_i are independent and normally distributed $N(0, \sigma)$.

Multiple Linear Regression Model

 For k number of explanatory variables, we can express the population mean response (the outcome or μ_y) as a linear equation:

$$\mu_{\mathbf{y}} = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k \tag{3}$$

• The statistical model for n sample data (i = 1, 2, ...n) is then:

$$\begin{array}{l} \text{Data} = & \text{fit} & + \text{residual} \\ y_i = (\beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki}) + (\varepsilon_i) \end{array}$$

where the ε_i are independent and normally distributed $N(0, \sigma)$.

• Multiple linear regression assumes equal variance σ^2 of y.

Multiple Linear Regression Model

 For k number of explanatory variables, we can express the population mean response (the outcome or μ_y) as a linear equation:

$$\mu_{y} = \beta_{0} + \beta_{1} X_{1} + \dots + \beta_{k} X_{k}$$
(3)

• The statistical model for n sample data (i = 1, 2, ...n) is then:

$$\begin{array}{l} \text{Data} = & \text{fit} & + \text{residual} \\ y_i = (\beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki}) + (\varepsilon_i) \end{array}$$

where the ε_i are independent and normally distributed $N(0, \sigma)$.

- Multiple linear regression assumes equal variance σ^2 of y.
- β_{0,1,...k} are parameters of the population model we try to estimate with our sample of *n* observations.

• From a simple random sample of *n* individuals for which we collect data on k + 1 variables $(x_1, ..., x_k, y)$, the least-squares regression method estimates the line that minimizes the sum of squared deviations $(e_i(=y_i - \hat{y}_i))$ to express y as the linear function of k explanatory variables:

$$\widehat{y}_i = b_0 + b_1 x_{1i} + \dots + b_k x_{ki}$$
 (4)

Multiple Regression Setup Statistical Inference Attendance

• From a simple random sample of *n* individuals for which we collect data on k + 1 variables $(x_1, ..., x_k, y)$, the least-squares regression method estimates the line that minimizes the sum of squared deviations $(e_i(=y_i - \hat{y}_i))$ to express y as the linear function of k explanatory variables:

$$\widehat{y}_i = b_0 + b_1 x_{1i} + \dots + b_k x_{ki} \tag{4}$$

• As is the case with simple linear regression, the constant b₀ is the intercept of the least-squares line of y.

From a simple random sample of n individuals for which we collect data on k + 1 variables (x₁,...x_k, y), the least-squares regression method estimates the line that minimizes the sum of squared deviations (e_i(= y_i - ŷ_i)) to express y as the linear function of k explanatory variables:

$$\widehat{y}_i = b_0 + b_1 x_{1i} + \dots + b_k x_{ki} \tag{4}$$

- As is the case with simple linear regression, the constant b_0 is the intercept of the least-squares line of y.
- The coefficients (*b*₁ *through b_k*) reflect the unique association of each independent variable in the model with outcome *y*, analogous to the slope of the simple linear model. They provide unbiased estimates of the population parameters.

	Statistical Inference	
000	000	0

 Estimating the regression parameters β₀, ..., β_k is a case of one-sample inference with unknown population variance.

	Statistical Inference	
000	000	0

- Estimating the regression parameters β₀, ..., β_k is a case of one-sample inference with unknown population variance.
- We rely on the t distribution with n k 1 degrees of freedom.

	Statistical Inference	
000	000	0

- Estimating the regression parameters β₀, ..., β_k is a case of one-sample inference with unknown population variance.
- We rely on the t distribution with n k 1 degrees of freedom.
- A level C confidence interval for the slope (β_j) is proportional to the standard error of the least-squares estimate of β_j:

$$b_j \pm t * SE_{bj} \tag{5}$$

	Statistical Inference	
000	000	0

- Estimating the regression parameters β₀, ..., β_k is a case of one-sample inference with unknown population variance.
- We rely on the t distribution with n k 1 degrees of freedom.
- A level C confidence interval for the slope (β_j) is proportional to the standard error of the least-squares estimate of β_j:

$$b_j \pm t * SE_{bj} \tag{5}$$

• We rely on statistics software to estimate SE_{bj}

	Statistical Inference	
000	000	0

- Estimating the regression parameters β₀, ..., β_k is a case of one-sample inference with unknown population variance.
- We rely on the t distribution with n k 1 degrees of freedom.
- A level C confidence interval for the slope (β_j) is proportional to the standard error of the least-squares estimate of β_j:

$$b_j \pm t * SE_{bj} \tag{5}$$

- We rely on statistics software to estimate SE_{bj}
- Note that t^{*} is the t-critical value for the t(n − k − 1) distribution with area C between -t^{*} and +t^{*}.

- Estimating the regression parameters β₀, ..., β_k is a case of one-sample inference with unknown population variance.
- We rely on the t distribution with n k 1 degrees of freedom.
- A level C confidence interval for the slope (β_j) is proportional to the standard error of the least-squares estimate of β_j:

$$b_j \pm t * SE_{bj} \tag{5}$$

- We rely on statistics software to estimate SE_{bj}
- Note that t* is the t-critical value for the t(n k 1) distribution with area C between -t* and +t*.
- As before, our t-score for b_j is again calculated as a ratio of the coefficient to the standard error:

$$t = \frac{b_j}{SE_{bj}} \tag{6}$$

· → ★ E ► ★ E ► _ E

with a t distribution of n - k - 1 degrees of freedom.

6/8

Coefficient of Determination (R^2)

• The coefficient of determination, generally referred to as R^2 or the square of the correlation coefficient, measures the percentage of the variance in y (vertical scatter from the regression line) that can be explained by changes in x. In multiple regression, the calculation and interpretation is the same *except* the predicted y (\hat{y}) of the model includes all explanatory variables taken together.

7/8

Coefficient of Determination (R^2)

- The coefficient of determination, generally referred to as R^2 or the square of the correlation coefficient, measures the percentage of the variance in y (vertical scatter from the regression line) that can be explained by changes in x. In multiple regression, the calculation and interpretation is the same *except* the predicted y (\hat{y}) of the model includes all explanatory variables taken together.
- More formally:

$$R^{2} = \frac{\sum (\widehat{y_{i}} - \overline{y})^{2}}{\sum (y_{i} - \overline{y}_{i})^{2}} = \frac{SSM}{SST}$$
(7)

・ロト ・回ト ・ヨト ・ヨト

Attendance

