イロト イヨト イヨト イヨト

1/16

Relationships

Stephen B. Holt, Ph.D.

ROCKEFELLER COLLEGE OF PUBLIC AFFAIRS & POLICY UNIVERSITY AT ALBANY State University of New York

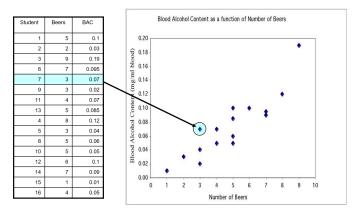
February 8, 2022

Scatterplots

Two Variable Example

- Here, we have two quantitative variables for each of 16 students.
 - How many beers they drank, and
 - Their blood alcohol level (BAC)
- We are interested in the relationship between the two variables: How is one affected by changes in the other one?

Student	udent Beers Blood Alcoho	
1	5	0.1
2	2	0.03
3	9	0.19
6	7	0.095
7	3	0.07
9	3	0.02
11	4	0.07
13	5	0.085
4	8	0.12
5	3	0.04
8	5	0.06
10	5	0.05
12	6	0.1
14	7	0.09
15	1	0.01
16	4	0.05


イロト イボト イラト イラト

Visualizing	Relationships				
00000000					
Scatterplot	S				

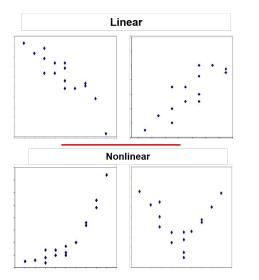
Scatterplots

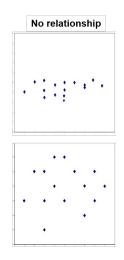
Measuring Relationships

In a **scatterplot**, one axis is used to represent each of the variables, and the data are plotted as points on the graph.

(日) (部) (注) (注) (三)

4 / 16

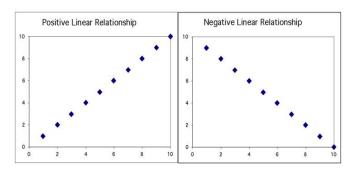

Interpreting scatterplots


- After plotting two variables on a scatterplot, we describe the relationship by examining the **form**, **direction**, and **strength** of the association. We look for an overall pattern ...
 - Form: linear, curved, clusters, no pattern
 - Direction: positive, negative, no direction
 - Strength: how closely the points fit the "form"
- ... and deviations from that pattern.
 - Outliers

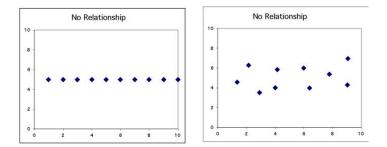
Visualizing Relationships 000000000 Scatterplots

Measuring Relationships 00000

Form and Direction of an Association

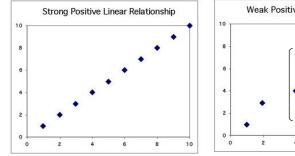


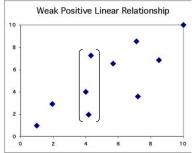
Direction of a Relationship


Positive association: High values of one variable tend to occur together with high values of the other variable.

Negative association: High values of one variable tend to occur together with low values of the other variable.

Direction of a Relationship

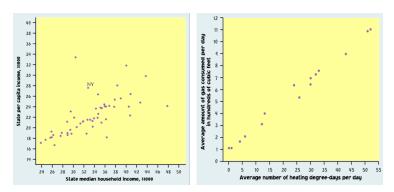

No relationship: X and Y vary independently. Knowing X tells you nothing about Y.


<ロト < 部ト < 書ト < 書ト 書 の Q () 7/16

Strength of a Relationship

The **strength** of the relationship between the two variables can be seen by how much variation, or **scatter**, there is around the main form.

With a strong relationship, you can get a pretty good estimate of y if you know x.

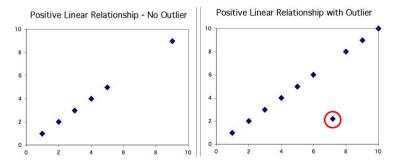

With a weak relationship, for any x you might get a wide range of y values.

イロト イボト イヨト イヨト

Visualizing Relationships 0000000000 Scatterplots

Measuring Relationship 00000

Strength of a Relationship

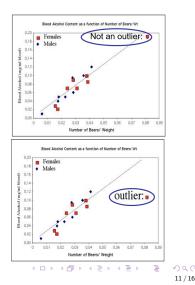


This is a **weak** relationship. For a particular state median household income, you can't predict the state per capita income very well. This is a **very strong** relationship. The daily amount of gas consumed can be predicted quite accurately for a given temperature value.

イロト イボト イヨト イヨト

Outliers

An outlier is a data value that has a very low probability of occurrence (i.e., it is unusual or unexpected).



In a scatterplot, outliers are points that fall outside of the overall pattern of the relationship.

Outliers

• The upper right-hand point here is not an outlier of the relationship—It is what you would expect for this many beers given the linear relationship between beers/weight and blood alcohol.

• This point is not in line with the others, so it *is* an outlier of the relationship.

Measure of spread: the standard deviation

The standard deviation "s" is used to describe the variation around the mean. Like the *mean*, it is not resistant to skew or outliers. Recall that there are two steps in the calculation of s: calculate the variance (s^2) and take the square root.

$$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \overline{x})^2}$$
(1)

The purpose of the standard deviation is to create a measure of spread that is *standardized*. For instance, the range of blood alcohol content values observed in a sample cannot be compared to the range of drinks consumed because they are measured with different units (parts of alcohol per 1000 parts of blood versus a count of beverages). Standard deviations use observations' distance from the average to create a measure of spread comparable across variables (i.e., a standard deviation increase has the same interpretation for both BAC and beers).

Visualizing Relationships 0000000000 Standard Deviation

Correlation Coefficient: Pearson's "r"

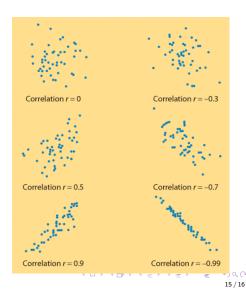
The Pearson's "r" provides a way to more precisely measure the relationship between two variables with a measure that can be compared across relationships.

$$r = \frac{1}{n-1} \sum_{i=1}^{n} (\frac{x_i - \bar{x}}{s_x}) (\frac{y_i - \bar{y}}{s_y})$$
(2)

- The steps to calculating the r coefficient begins with computing the mean and standard deviation of both variables you believe are related.
- Then calculate the percent of a standard deviation each observation falls on both variables.
- Multiplying these together for each variable provides a measure of the relationship between x and y for each observation in the sample.
- Adding these factors and dividing them by the degrees of freedom (n-1) provides the average strength of the relationship between x and y in the sample, or the r coefficient.

Example of Pearson's R: Airfare

What's the relationship between the price of a plane ticket and the distance of the flight?


Sample: 15 flights Avg. distance (\overline{x}) : 1145 miles s_x : 706.8 miles Avg. price (\overline{y}) : \$218.7 s_y : \$61.93 r $(\frac{\sum times}{n-1})$: 0.70 ...a strong relationship!

idn	dist (x)	fare (y)	(x-xbar)/s	(y-ybar)/s	times
1	2310	361	1.65	2.30	3.79
2	656	132	-0.69	-1.40	0.97
3	904	274	-0.34	0.89	-0.30
4	444	182	-0.99	-0.59	0.59
5	2458	271	1.86	0.84	1.57
6	1050	153	-0.13	-1.06	0.14
7	1710	210	0.80	-0.14	-0.11
8	624	183	-0.74	-0.58	0.43
9	957	213	-0.27	-0.09	0.02
10	1334	167	0.27	-0.84	-0.22
11	444	186	-0.99	-0.53	0.52
12	769	203	-0.53	-0.25	0.14
13	810	253	-0.47	0.55	-0.26
14	453	190	-0.98	-0.46	0.45
15	2254	303	1.57 • •	₽1.36≡ ► < ≡	2.13

14/16

Visualizing r coefficients

- "r" quantifies the strength and direction of a linear relationship between 2 quantitative variables.
- Strength: how closely the points follow a straight line.
- **Direction**: is positive when individuals with higher X values tend to have higher values of Y.

Lurking Variables

A **lurking variable** is a variable not included in the study design that does have an effect on the variables studied. Lurking variables can *falsely suggest* a relationship. What is the lurking variable in these examples? How could you answer if you didn't know anything about the topic?

Examples:

- Strong positive association between number of firefighters at a fire site and the amount of damage a fire does.
- Negative association between moderate amounts of wine drinking and death rates from heart disease in developed nations.