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Basics of Hypotheses

Hypotheses are statements about theoretical relationships between
two variables

Generally, hypotheses flow logically from a theoretical argument

Example: if wages are determined purely by the marginal product of
labor, a higher price for labor will increase unemployment

When using empirical data to test a hypothesis, we use thresholds to
determine the likelihood our observed patterns would occur if the
underlying data generating process had no pattern (or a dissimilar
pattern)

Empirical hypothesis testing rests does not tell you anything about
what relationships between variables to expect, what those
relationships should be, or what hypothesized relationships to even
test - that is the role of theory
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Distributions

Density Curves and Distributions

Distributions describe the range and frequency of observations of a
particular variable.

While a histogram can document the number of observations at a
given value of a variable, a density curve plots the area of a range of
values the represents the proportion of all values within that range.

The full area under a curve, consequently, is 100% of observations.
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Distributions

Density Curves and Distributions

Density curves can come in all shapes and sizes, some better understood
than others.
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Distributions

Normal Distributions

Normal – or Gaussian – distributions are a family of symmetrical,
bell-shaped density curves defined by a mean µ (mu) and a standard
deviation σ (sigma): N(µ, σ).
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Distributions

Normal Distributions

Distributions with the same
mean and different spreads:

Distributions with different
means and the same spreads:
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Distributions

Special Properties of Normal Distributions

Normal distributions have mathematical
properties that we use a lot in statistical
inference. The 68-95-99.7 rule allows us to
assess relative points in a distribution in terms
of standard deviation. The rule is:

68% of observations fall within 1 standard
deviation (σ) of the mean (µ)

95% of observations fall within 2 standard
deviations (σ) of the mean (µ)

99.7% of observations fall within 3 standard
deviations (σ) of the mean (µ)

Note that µ and σ will always be used to refer
to the (usually unknown) population mean
and s.d., while X and sx will always refer to a
sample mean and s.d.
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Sampling Distributions

What are sampling distributions?

The sampling distribution of a statistic is the distribution of all
possible values taken by the statistic when all possible samples of a fixed
size n are taken from the population. It is a theoretical idea — we do not
actually build it.

The sampling distribution of a statistic is the probability distribution of
that statistic.
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Sampling Distributions

Sampling distribution of the sample mean

If we were to build the sampling distribution, we would take many, many
samples of a given sample size (n) from a population with mean µ and
standard deviation σ.
Some of these samples will have a mean above the population mean µ
and some will be below. If we plot the mean of each sample in a
distribution, we will have the sampling distribution of µ. Note, this is
different than a distribution of x from a single sample.

Say we have a population of 80,000
people and µ = 2000 sq. ft. houses. We
draw a bunch of simple random samples
(SRS) and calculate the mean sq. ft.:

1 SRS size 1000 → x = 1985

2 SRS size 1000 → x = 1999

3 SRS size 1000 → x = 2010
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Sampling Distributions

For any population with mean µ and standard deviation σ:

The mean (or center) of the sampling distribution of x is equal to
the population mean µ (the law of large numbers)

The standard deviation of the sampling distribution is
σ√
n
, where n

is the sample size (the central limit theorem).

These two properties of the sampling distribution are dictated by the law
of large numbers and the central limit theorem.

Say we have a population of 80,000
people and µ = 2000 sq. ft. houses. We
draw a bunch of simple random samples
(SRS) and calculate the mean sq. ft.:

1 SRS size 1000 → x = 1985

2 SRS size 1000 → x = 1999

3 SRS size 1000 → x = 2010
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Consistency

Law of Large Numbers

Here, I will use data from a simulation to demonstrate the law of large
numbers and central limit theorem. The law of large numbers dictates
that as a sample size gets larger and larger, the average of the sample
will be the same as the average of the population.

In other words, the larger the sample we collect information from, the
more likely the samples will have roughly the same average. This is
referred to as an estimate’s consistency.

Since sampling distributions are theoretically built with infinite samples,
or very large numbers of samples of the same variable from the same
population, the law of large numbers dictates that the mean of their
distribution will be equal to the mean of the population.
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Consistency

Example of Law of Large Numbers

I created a fake population of 800,000 people and data on their incomes
(in $1000s) with a mean of $50K. Unlike most real-world situations, this
means we know the true value of µ and σ. In this case, µ = 49.99 and
σ = 9.99. Below is the distribution from the population:
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Consistency

Example of Law of Large Numbers

I simulated taking a thousand random samples with sample sizes of 1,000
observations and 10,000 observations and calculated the average of each
sample. The distributions below show the sample means of all 1,000
samples for each sample size:
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Consistency

Example of Law of Large Numbers

A few things to note about what the simulation is showing:
1 The range for the population is from 20 to 120 while the sample

distributions both range from 1.3 below to 1.01 above the µ of 50 (with a
smaller range for the larger sample).

2 The high peak for samples of 10,000 people shows that a much larger
proportion of samples have an estimated mean (x) equal to the underlying
population mean (µ).

3 Larger sample sizes yield means that converge closer and closer to the
underlying population average.
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Consistency

Example of Central Limit Theorem

The central limit theorem provides the basis for estimating standard
deviations from samples and performing hypothesis tests. The central
limit theorem states that the sampling distribution of means will always
be approximately normally distributed, even when the variable is not
normally distributed in the population. Notice that our population in the
previous example had a long tail to the right, but the sampling
distributions did not:
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Consistency

Example of Central Limit Theorem

Rescaling and recentering both distributions shows that the sampling
distribution for both 1,000 observation samples and 10,000 observations
samples is nearly identical to a normal distribution.
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Statistical Confidence

Although the sample mean is a unique number for any particular sample,
if you pick a different sample you will probably get a different sample
mean.
In fact, you could get many different values for the sample mean, and
virtually none of them would actually equal the true population mean, µ.
But due to the Law of Large Numbers, we know it will be close,
particularly when we take larger samples.

µ =?; σ = 500. We draw a bunch of
simple random samples (SRS) and
calculate the mean sq. ft.:

1 SRS size 1000 → x = 1985

2 SRS size 1000 → x = 1999

3 SRS size 1000 → x = 2010

Sampling distribution of x
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Confidence Intervals

We can use our knowledge that the sampling distribution will be 1)
centered around the population mean because of the law of large
numbers and 2) will have a normal distribution because of the central
limit theorem to help us assess the quality and confidence we have that
our sample average accurately represents the population average. We can
do this using the standard deviation of the sampling distribution to
calculate what’s known as a confidence interval.

The confidence interval is a range of values with an associated
probability or confidence level C. The probability quantifies the chance
that the interval contains the true population parameter.

µ =?; σ = 500; σx =
500√
1000

= 15.81. We draw a bunch of simple

random samples (SRS) and calculate the mean sq. ft.:

1 SRS size 1000 → x = 1985 → x ± 31.62 → 1985± 31.62

2 SRS size 1000 → x = 1999 → x ± 31.62 → 1999± 31.62

3 SRS size 1000 → x = 2010 → x ± 31.62 → 2010± 31.62
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Confidence Intervals

A confidence interval can be calculated as x ±m.
m refers to the margin of error or the z-score the analyst is choosing for

C confidence levels. Thus, m = z ∗ σ√
n
.

As an example, mean of 120 and margin of error of 6:
120± 6 → confidence interval ranges from 114 to 126.

You interpret this as: 95% of sample means of samples of n size will be
between 114 and 126 or I am 95% confident that the true population
mean is between 114 and 126.

A confidence level C (in %) indicates the probability that the µ falls
within the interval. It represents the area under the normal curve within
±m of the center of the curve.
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Link between Confidence Level and Margin of Error

The confidence level C determines the value of z*.
The margin of error also depends on z*.

The C is the percent of the distribution you would like to fall between the
two end points you plan to calculate. That percent provides a measure of
how likely you are to have an estimated average that is unrealistic or far
from the true average. Once you’ve decided on the percentage for C, you

choose the z-score associated with C and use the formula m = z ∗ σ√
n
to

calculate the end points of the confidence interval.

A higher C means more confidence that the true mean is within the
interval, but it also means a wider interval (less precise estimates).

A lower C means less confidence in our estimate, but a narrower interval
(more precise estimates).
We generally prefer to be cautious. A rule of thumb is to use 95%
confidence intervals (i.e., a z-score of 2).
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Implications

We don’t need to take endless random samples to “rebuild” the sampling
distribution and find µ at its center. We only need one SRS of size n and
we can use the properties of the sampling distribution of means to infer
the population mean µ. The central limit theorem and law of large
numbers let us have pre-existing knowledge of the sampling distribution
without building it from scratch each time.
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Significance Tests

Reasoning of Significance Tests

We have seen that the properties of the sampling distribution of x
help us estimate a range of likely values for population mean µ

Centered on µ
Normal distribution with a narrower measure of spread than the
population

Example: You are in charge of ensuring safe streets. You randomly
sample speeds of drivers on 4 parts of a main avenue.

The average speed in your sample was 48 mph. Obviously, we
cannot expect every section of the avenue to have the same travel
speeds. Thus,

Is the somewhat higher speed in your sample due to chance
variation?
Is it evidence that the city should consider more aggressive
enforcement or changes to the streetscape?
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Significance Tests

Stating Hypotheses

A test of statistical significance tests a specific hypothesis using sample
data to decide on the validity of the hypothesis.

In statistics, a hypothesis is an assumption or a theory about the
characteristics of one of more variables in one or more populations.

Example: What you want to know: Does the street need more attention
for safety reasons?

That same question reframed statistically: Is the population mean µ for
the distribution of speeds traveled on the road equal to 35 mph (i.e., the
speed limit)?
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Significance Tests

Stating Hypotheses

The null hypothesis is a very specific statement about a parameter of the
population(s). It is labeled H0.

The alternative hypothesis is a more general statement about a parameter
of the population(s) that is exclusive of the null. It is labeled Ha.

Example: Travel speeds on main avenue:

H0: µ = 35mph (µ is the average speed of travelers on the road)
Ha: µ ̸= 35mph (µ is either larger or smaller)
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Significance Tests

One-sided and Two-sided Tests

A two-tail or two-sided test of the population mean has these null
and alternative hypotheses:

H0 : µ = [a specific number] Ha : µ ̸= [a specific number]

A one-tail or one-sided test of a population mean has these null and
alternative hypotheses:

H0 : µ = [a specific number] Ha : µ < [a specific number]
H0 : µ = [a specific number] Ha : µ > [a specific number]

The FDA tests whether a generic drug has an absorption extent similar to
the known absorption extent of the brand-name drug it is copying.
Higher or lower absorption would both be problematic, thus we test:
H0 : µgeneric = µbrand Ha : µgeneric ̸= µbrand two-sided
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Significance Tests

How to Choose?

What determines the choice of a one-sided versus a two-sided test is
what we know about the problem before we perform a test of statistical
significance.
Example: A health advocacy group tests whether the mean nicotine
content of a brand of cigarettes is greater than the advertised value of
1.4 mg.
Here, the health advocacy group suspects that cigarette manufacturers
sell cigarettes with a nicotine content higher than what they advertise in
order to better addict consumers to their products and maintain
revenues. Thus, this is a one-sided test: H0 : µ = 1.4mg Ha : µ > 1.4mg
It is important to make that choice before performing the test or else you
could make a choice of “convenience” or fall into circular logic.
In practice, we want to exercise caution - a two-sided t-test will thus
be preferred in most instances.
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Significance Tests

The P-Value

The speed of drivers in your city has a known standard deviation of 10
mph.

H0: µ = 35mph versus Ha: µ ̸= 35mph

Tests of statistical significance quantify the chance of obtaining a
particular random sample result if the null hypothesis were true. This
quantity is the P-value.

This is a way of assessing the “believability” of the null hypothesis, given
the evidence provided by a random sample.
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Significance Tests

Interpreting The P-Value

With a small p-value we reject H0. The true property of the population is
significantly different from what was stated in H0.

Thus, small P-values are strong evidence AGAINST H0

But how small is small...?
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Significance Tests

Interpreting The P-Value

When the shaded area becomes very small, the probability of drawing
such a sample at random gets very slim. Oftentimes, a P-value of 0.05 or
less is considered significant: The phenomenon observed is unlikely to be
entirely due to chance event from the random sampling.
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Significance Tests

Tests for a Population Mean

The p-value is the area under the sampling distribution for values at least
as extreme, in the direction of Ha, as that of our random sample.

Again, we first calculate a z-value and then use a z-table:

z =
x − µ
σ√
n

30 / 35



Empirical Hypothesis Testing Sampling and Hypothesis Testing Statistical Inference Hypothesis Testing

Significance Tests

P-value in one-sided and two-sided tests

To calculate the P-value for a two-sided test, use the symmetry of the
normal curve. Find the P-value for a one-sided test and double it.
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Significance Tests

Does the street need attention for speeding?

H0: µ = 35mph versus Ha: µ ̸= 35mph

What is the probability of drawing a random sample such as yours if
H0 is true?
x = 48mph σ = 10mph n = 4

z =
x − µ
σ√
n

→ 48− 35
10√
4

→ 2.4

From a z-table, the area under the standard normal curve to the left
of z is 0.9918.
To the right, this would be 1 - 0.9918 or 0.0082.
For a two-sided test, we would multiply by 2 (2× 0.0082) for a
p-value of 0.0164.
The probability of getting a random sample average this far above µ
is so low that we can safely reject H0.
We would conclude that the street does need some safety attention.
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Significance Tests

Steps for Tests of Significance

1 State the null hypotheses H0 and the alternative hypothesis Ha.

2 Calculate value of the test statistic.

3 Determine the P-value for the observed data.

4 State a conclusion.
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Significance Tests

The significance level: α

The significance level, α, is the largest P-value tolerated for rejecting a
true null hypothesis (how much evidence against H0 we require). This
value is decided arbitrarily before conducting the test.

If the P-value is equal to or less than α (P ≤ α), then we reject H0.

If the P-value is greater than α (P > α), then we fail to reject H0.

Example: The speed sample p-value was 0.0164. If α had been set to
1%, we would fail to reject the null and the p-value would be
insignificant. If α had been set to 5%, we would reject the null and the
p-value would be significant.
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Significance Tests

Confidence intervals and Inference

Because a two-sided test is symmetrical, you can also use a confidence
interval to test a two-sided hypothesis. In a two-sided test, C = 1 - α.

Example: σ = 10 mph: H0: µ = 35mph versus Ha: µ ̸= 35mph
Sample average 48 mph. 95% CI for µ = 48 mph ±
1.96× 10√

4
→ 48mph = ±9.8mph

35 mph is not in the 95% CI (38.2 to 57.8 mph). Thus, we reject H0.
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