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Returning to the Road Map

Most policy research involves deceptively simple steps:

1 Define the question you would like answered.

2 State hypotheses about the answer to the question.

3 Collect data that can answer the question (convenience samples,
random samples, stratified or multistage samples).

4 Calculate measures to test hypotheses put forward about the
relationship of interest (measures of central tendency, measures of
spread, test statistics).

5 Organize and report results (graphs, tables, interpretations of
measures).
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Focusing on Steps 2 and 4: Hypothesis Testing

1 State the null and alternative hypotheses and α level of significance

Null is a status quo assumption about the world you are testing with
your sample of data. Stated as Ho : µ = X where X is an assumption
about the true value of µ
Alternative is your assumption about the world you are testing with
your sample of data. Generally, the alternative hypothesis takes the
form of H1 : µ ̸= X , H1 : µ > X , or H1 : µ < X .
α is a probability, from 0 to 1, that represents the maximum
threshold of a p-value you will accept for rejecting the null.
Conventionally, social scientists use α = 0.05.

2 Calculate t-statistic to test the null hypothesis

t =
(X − µ)

s√
n

using the mean, standard deviation, and n from your

sample and plugging in your null hypothesis for µ

3 Use the absolute value of t to find the p-value.

4 Compare the p-value to α; if p < α, reject the null hypothesis.
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Reminders

Hypothesis testing is always about whether a statistic (e.g,
X ,X 1 − X 2) accurately reflects a parameter of interest (e.g.,
µ, µ1 − µ2).

A parameter can be the value of a single variable in a typical
observation in a population OR the typical relationship between two
variables in a typical observation in a population.

The logic of hypothesis testing for a relationship between two
variables is very similar to the logic of testing a statistic from a
sample - how confident are we that our estimate of the relationship
is not due to random chance?
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Basics

Linear Regression Setup

Linear regression continues our effort at the same goal we’ve had in
previous weeks: using a sample to estimate a population parameter
(thus far, µ) and test hypotheses about the population parameter.

Now we move to a parameter that captures a relationship between
two variables in a population, similar to two-sample hypothesis
testing. We’ve seen scatterplots of x and y before. They also come
from random samples and change across samples.
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Basics

Linear Regression Setup

In our brave new world, we are still interested in an underlying
population parameter, in this case the average outcome Y or µy .

Linear regressions, as the name implies, expresses the relationship of
x and y as a linear relationship. The goal is to use the line that fits
the relationship observed in the data to learn about the population
mean response µy as a function of our explanatory variable X .

Mathematically expressed: µy = β0 + β1x

We also want to know if βx , the relationship observed, is statistically
significant (i.e., not attributable to chance or sampling error).
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Statistical Model for Linear Regression

In the population, there is a linear regression relationship:
µy = β0 + β1x .

So, because µy is some outcome we think is important, like stopping
boats from killing manatees, and x can tell us something about what
changes µy in the population, we collect a sample of data.

The sample can then be used to fit the simple model:
Data = fit + residual
yi = (β0 + β1x) + εi ,
where εi are independent and normally distributed N(0, σ).

Linear regression assume equal variance of y (i.e., σ is the same for
all values of x).
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Estimating parameters

In the underlying regression model in the population, µy = β0 + β1x , the
intercept (β0), the slope (β1), and the standard deviation of y (σy ) are all
the unknown parameters that we would like to estimate. We rely on the
random sample data and least-squares regression to provide unbiased
estimates of these parameters (just like with means and two sample
tests!).

The value of ŷ from the least-squares regression line is really a
prediction of the mean value of y (µy ) for a given value of x.

The least-squares regression line (ŷ = b0 + b1x) is the best estimate
of the true population regression line (µy = β0 + β1x)

ŷ unbiased estimate for mean population response µy

b0 unbiased estimate for intercept β0

b1 unbiased estimate for slope β1
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ŷ unbiased estimate for mean population response µy

b0 unbiased estimate for intercept β0

b1 unbiased estimate for slope β1

9 / 21



Review Linear Regression Setup Statistics Statistical Inference

Estimating parameters

In the underlying regression model in the population, µy = β0 + β1x , the
intercept (β0), the slope (β1), and the standard deviation of y (σy ) are all
the unknown parameters that we would like to estimate. We rely on the
random sample data and least-squares regression to provide unbiased
estimates of these parameters (just like with means and two sample
tests!).
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ŷ unbiased estimate for mean population response µy

b0 unbiased estimate for intercept β0

b1 unbiased estimate for slope β1

9 / 21



Review Linear Regression Setup Statistics Statistical Inference

Estimating parameters

In the underlying regression model in the population, µy = β0 + β1x , the
intercept (β0), the slope (β1), and the standard deviation of y (σy ) are all
the unknown parameters that we would like to estimate. We rely on the
random sample data and least-squares regression to provide unbiased
estimates of these parameters (just like with means and two sample
tests!).
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of the true population regression line (µy = β0 + β1x)
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Estimating parameters

Calculating the best fit line ourselves would involve first calculating the
slope:

β1 =

∑
(xi − X )(yi − Y )∑

(xi − X )2
(1)

...and then using the basic form of a line to calculate the intercept:

β0 = Y − β1X (2)
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Regression Standard Errors

Recall that statistical inference for the mean of a sample relies upon
an estimate of σ to calculate the standard error (s.e. = s√

n
, where s

is the sample standard deviation). The logic and process is similar
for regression estimates.

As before, the population standard deviation of y, σy , represents the
spread of y, only in the population regression model, it reflects the
spread of y for each value of x in the population (i.e., the spread of
the normal distribution of εi around the mean µy ).
Of course, we don’t observe this, but we can use our sample data to
compute an estimate of the regression standard error, s, for a
sample sized n using the residuals (yi − ŷi ):

sreg =

√∑
residual2

n − 2
=

√∑
(yi − ŷi )

2

n − 2
(3)

s provides an unbiased estimate of the regression standard deviation
σ, which we can use for inference about the mean population
response µy .
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Regression Standard Errors, continued

The formula is similar for the standard error of the slope (β1), only the
regression standard error (sreg ) is divided by the square root of the
squared residuals of X:

SEb1 =
sreg√∑
(xi − x)2

(4)
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Confidence Intervals for Regression Parameters

Estimating the regression parameters β0, β1 is a case of one-sample
inference with unknown population variance.

We rely on the t distribution with n-2 degrees of freedom.

A level C confidence interval for the slope (β1) is proportional to the
standard error of the least-squares slope:

b1 ± t ∗ SEb1 (5)

A level C confidence interval for the intercept (β0) is proportional to
the standard error of the least-squares intercept:

b0 ± t ∗ SEb0 (6)

Note that t* is the t-critical value for the t(n-2) distribution with
area C between -t* and +t*.
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Significance test for the slope

Once we have calculated the standard error of the least-squares
regression line, the process for testing whether the relationship
between x and y is statistically significant is analogous to the process
for hypothesis testing for a single sample estimate. Here, b1, or the
slope of the least-squares line, is the estimate we use to test a
hypothesis about β1.

As usual, we start with the null hypothesis. Here, since we want to
know if our observed relationship between x and y in our sample is
significant, we use the null hypothesis that there is no relationship.
Formally, H0 : β1 = 0. We can test using a 1- or 2-sided alternative
hypothesis.
We will again use the t distribution and calculate our t-score using
our estimate of the parameter and estimate of the parameter’s
spread. In this case, t = b1

SEb1
.

We then use the t distribution of t(n− 2) degrees of freedom to find
the p-value.
Finally, as before, we compare the p-value to our α threshold and
infer whether β1 is significantly different from 0 given our sample.
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Significance test for the slope

Visually:
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Inference for Prediction

One use for regression is for predicting the value of y , ŷ , for any
value of x within the range of data tested: ŷ = b0 + b1x

But, just like our estimates y from a sample, the regression equation
depends on the particular sample drawn. More reliable predictions
require inference.

To estimate an individual response y for a given value x , we use a
prediction interval.

If we randomly sampled many times, there would be many different
values of y obtained for a particular x following a N(0, σ)
distribution around the mean response µy .
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depends on the particular sample drawn. More reliable predictions
require inference.

To estimate an individual response y for a given value x , we use a
prediction interval.

If we randomly sampled many times, there would be many different
values of y obtained for a particular x following a N(0, σ)
distribution around the mean response µy .
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Confidence Intervals and Prediction

We can calculate a confidence interval at level C for each predicted
value of y , ŷ , at each level or value of x .

The level C prediction interval for a single observation of y when x
takes on the value x∗ is:
ŷ ± t ∗n−2 SEŷ

The prediction interval represents mainly the error from the normal
distribution of the residuals (εi ).
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Confidence Intervals and Prediction

We can calculate a confidence interval at level C for each predicted
value of y , ŷ , at each level or value of x .

The level C prediction interval for a single observation of y when x
takes on the value x∗ is:
ŷ ± t ∗n−2 SEŷ

The prediction interval represents mainly the error from the normal
distribution of the residuals (εi ).
Graphically:
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Confidence Intervals for Mean Response (µy)

The confidence interval for µy contains, with level C% confidence,
the population mean µy at a particular level of x.

The prediction interval contained C% of all the individual values
taken by y at a particular value of x.

Graphically:

95% prediction interval for ŷ in green
95% confidence interval for µy in blue
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Coefficient of Determination (R2)

The coefficient of determination, generally referred to as R2 or the
square of the correlation coefficient, measures the percentage of the
variance in y (vertical scatter from the regression line) that can be
explained by changes in x.

R2 =
variation in y caused by x (the regression line)

total variation in observed y values around the mean

More formally:

R2 =

∑
(ŷi − y)2∑
(yi − y i )

2
=

SSM

SST
(7)
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